SAF-A has a role in transcriptional regulation of Oct4 in ES cells through promoter binding.
نویسندگان
چکیده
Methodologies to reprogram somatic cells into patient-specific pluripotent cells, which could potentially be used in personalized drug discovery and cell replacement therapies, are currently under development. Oct4 activation is essential for successful reprogramming and pluripotency of embryonic stem (ES) cells, albeit molecular details of Oct4 activation are not completely understood. Here we report that endogenous SAF-A is involved in regulation of Oct4 expression, binds the Oct4 proximal promoter in ES cells, and dissociates from the promoter upon early differentiation induced by LIF withdrawal. Depletion of SAF-A decreases Oct4 expression even in the presence of LIF, and results in an increase of the mesodermal marker Brachyury. The overexpression of wild-type human SAF-A rescues the mouse knock-down phenotype and results in increased Oct4 level. We also demonstrate that endogenous SAF-A interacts with the C-terminal domain (CTD) of endogenous RNA polymerase II and that the interaction is independent of CTD phosphorylation and mRNA. Moreover, we show that SAF-A exist in complexes with transcription factors Sox2 and Oct4 as well as STAT3 in ES cells. The number of endogenous SAF-A:Oct4 and SAF-A:Sox2 complexes decreases upon LIF depletion. These discoveries allow us to propose a model for activation of Oct4 transcription.
منابع مشابه
Potential roles of 5´ UTR and 3´ UTR regions in post-trans-criptional regulation of mouse Oct4 gene in BMSC and P19 cells
Objective(s):OCT4 is a transcription factor required for pluripotency during early embryogenesis and the maintenance of identity of embryonic stem cells and pluripotent cells. Therefore, the effective expression regulation of this gene is highly critical. UTR regions are of great significance to gene regulation. In this study, we aimed to investigate the potential regulatory role played by 5´UT...
متن کاملP-88: Comparing Epigenetic Profile of Oct4 Regulatory Region in Embryonal Carcinoma Cells under Retinoic Acid Induction
Background: Embryonal carcinoma (EC) cells derived from germ cell tumors are valuable tools for investigating differentiation and developmental biology processes in vitro. The advantage of the reproducible and rapid expansion of these cell lines provides a useful alternative to embryos for the study of mammalian cell differentiation. During early stages of cell differentiation, the rate of tran...
متن کاملGenome-wide analysis reveals Sall4 to be a major regulator of pluripotency in murine-embryonic stem cells.
Embryonic stem cells have potential utility in regenerative medicine because of their pluripotent characteristics. Sall4, a zinc-finger transcription factor, is expressed very early in embryonic development with Oct4 and Nanog, two well-characterized pluripotency regulators. Sall4 plays an important role in governing the fate of stem cells through transcriptional regulation of both Oct4 and Nan...
متن کاملA Data Integration Approach to Mapping OCT4 Gene Regulatory Networks Operative in Embryonic Stem Cells and Embryonal Carcinoma Cells
It is essential to understand the network of transcription factors controlling self-renewal of human embryonic stem cells (ESCs) and human embryonal carcinoma cells (ECs) if we are to exploit these cells in regenerative medicine regimes. Correlating gene expression levels after RNAi-based ablation of OCT4 function with its downstream targets enables a better prediction of motif-specific driven ...
متن کاملA nontranscriptional role for Oct4 in the regulation of mitotic entry.
Rapid progression through the cell cycle and a very short G1 phase are defining characteristics of embryonic stem cells. This distinct cell cycle is driven by a positive feedback loop involving Rb inactivation and reduced oscillations of cyclins and cyclin-dependent kinase (Cdk) activity. In this setting, we inquired how ES cells avoid the potentially deleterious consequences of premature mitot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cellular reprogramming
دوره 13 1 شماره
صفحات -
تاریخ انتشار 2011